E13-1 If the projectile had not experienced air drag it would have risen to a height \(y_2 \), but because of air drag 68 kJ of mechanical energy was dissipated so it only rose to a height \(y_1 \). In either case the initial velocity, and hence initial kinetic energy, was the same; and the velocity at the highest point was zero. Then \(W = \Delta U \), so the potential energy would have been 68 kJ greater, and
\[
\Delta y = \frac{\Delta U}{mg} = \frac{(68 \times 10^3 \text{J})/(9.4 \text{ kg})(9.81 \text{ m/s}^2)}{9.4 \text{ kg}} = 740 \text{ m}
\]
is how much higher it would have gone without air friction.

E13-2 (a) The road incline is \(\theta = \arctan(0.08) = 4.57^\circ \). The frictional forces are the same; the car is now moving with a vertical upward speed of \((15 \text{ m/s}) \sin(4.57^\circ) = 1.20 \text{ m/s} \). The additional power required to drive up the hill is then \(\Delta P = m g v_y = (1700 \text{ kg})(9.81 \text{ m/s}^2)(1.20 \text{ m/s}) = 20000 \text{ W} \). The total power required is 36000 W.
(b) The car will “coast” if the power generated by rolling downhill is equal to 16000 W, or
\[
v_y = \frac{(16000 \text{ W})}{[(1700 \text{ kg})(9.81 \text{ m/s}^2)]} = 0.959 \text{ m/s},
\]
down. Then the incline is
\[
\theta = \arcsin(0.959 \text{ m/s}/15 \text{ m/s}) = 3.67^\circ.
\]
This corresponds to a downward grade of \(\tan(3.67^\circ) = 6.4\% \).

E13-3 Apply energy conservation:
\[
\frac{1}{2} m v^2 + m g y = \frac{1}{2} m v_i^2 + m g y_i,
\]
so
\[
v = \sqrt{-2(9.81 \text{ m/s}^2)(-0.084 \text{ m}) - (262 \text{ N/m})(-0.084 \text{ m})^2/(1.25 \text{ kg})} = 0.41 \text{ m/s}.
\]

E13-4 The car climbs a vertical distance of \((225 \text{ m}) \sin(10^\circ) = 39.1 \text{ m} \) in coming to a stop. The change in energy of the car is then
\[
\Delta E = -\frac{1}{2} \frac{(16400 \text{ N})}{(9.81 \text{ m/s}^2)}[(31.4 \text{ m/s})^2 + (16400 \text{ N})(39.1 \text{ m})] = -1.83 \times 10^5 \text{ J}.
\]

E13-5 (a) Applying conservation of energy to the points where the ball was dropped and where it entered the oil,
\[
\frac{1}{2} m v_i^2 + m g y_i = \frac{1}{2} m v^2 + m g y,
\]
\[
\frac{1}{2} v^2 + g(0) = \frac{1}{2} (0)^2 + g y_i,
\]
\[
v = \sqrt{2 g y_i},
\]
\[
= \sqrt{2(9.81 \text{ m/s}^2)(0.76 \text{ m})} = 3.9 \text{ m/s}.
\]
(b) The change in internal energy of the ball + oil can be found by considering the points where the ball was released and where the ball reached the bottom of the container.
\[
\Delta E = K_f + U_f - K_i - U_i,
\]
\[
= \frac{1}{2} m v^2 + m g y_i - \frac{1}{2} m (0)^2 - m g y,
\]
\[
= \frac{1}{2} (12.2 \times 10^{-3} \text{ kg})(1.48 \text{ m/s})^2 - (12.2 \times 10^{-3} \text{ kg})(9.81 \text{ m/s}^2)(0.55 \text{ m} - 0.76 \text{ m}),
\]
\[
= -0.143 \text{ J}
\]
157
E13-6 (a) $U_i = (25.3 \text{ kg})(9.81 \text{ m/s}^2)(12.2 \text{ m}) = 3030 \text{ J}.$
(b) $K_f = \frac{1}{2}(25.3 \text{ kg})(5.56 \text{ m/s})^2 = 391 \text{ J}.$
(c) $\Delta E_{\text{int}} = 3030 \text{ J} - 391 \text{ J} = 2640 \text{ J}.$

E13-7 (a) At atmospheric entry the kinetic energy is

$$K = \frac{1}{2}(7.9 \times 10^4 \text{ kg})(8.0 \times 10^3 \text{ m/s})^2 = 2.5 \times 10^{12} \text{ J}.$$

The gravitational potential energy is

$$U = (7.9 \times 10^4 \text{ kg})(9.8 \text{ m/s}^2)(1.6 \times 10^5 \text{ m}) = 1.2 \times 10^{11} \text{ J}.$$

The total energy is $2.6 \times 10^{12} \text{ J}.$

(b) At touch down the kinetic energy is

$$K = \frac{1}{2}(7.9 \times 10^4 \text{ kg})(9.8 \times 10^3 \text{ m/s})^2 = 3.8 \times 10^8 \text{ J}.$$

E13-8 $\Delta E/\Delta t = (68 \text{ kg})(9.8 \text{ m/s}^2)(59 \text{ m/s}) = 39000 \text{ J/s}.$

E13-9 Let m be the mass of the water under consideration. Then the percentage of the potential energy “lost” which appears as kinetic energy is

$$\frac{K_f - K_i}{U_i - U_f}.$$

Then

$$\frac{K_f - K_i}{U_i - U_f} = \frac{1}{2} m (v_f^2 - v_i^2) / (mgy_i - mgy_f),$$

$$= \frac{v_f^2 - v_i^2}{-2g\Delta y},$$

$$= \frac{(13 \text{ m/s})^2 - (3.2 \text{ m/s})^2}{-2(9.81 \text{ m/s}^2)(-15 \text{ m})},$$

$$= 54 \%.$$

The rest of the energy would have been converted to sound and thermal energy.

E13-10 The change in energy is

$$\Delta E = \frac{1}{2}(524 \text{ kg})(62.6 \text{ m/s})^2 - (524 \text{ kg})(9.81 \text{ m/s}^2)(292 \text{ m}) = 4.74 \times 10^5 \text{ J}.$$

E13-11 $U_f = K_i - (34.6 \text{ J}).$ Then

$$h = \frac{1}{2} \left(\frac{(7.81 \text{ m/s})^2}{2 (9.81 \text{ m/s}^2)} \right) - \frac{(34.6 \text{ J})}{(4.26 \text{ kg})(9.81 \text{ m/s}^2)} = 2.28 \text{ m}.$$

which means the distance along the incline is $(2.28 \text{ m})/ \sin(33.0^\circ) = 4.19 \text{ m}.$
E13-12 (a) \(K_f = U_i - U_f \), so

\[
v_f = \sqrt{2(9.81 \text{ m/s}^2)[(862 \text{ m}) - (741 \text{ m})]} = 48.7 \text{ m/s}.
\]

That’s a quick 175 km/h; but the speed at the bottom of the valley is 40% of the speed of sound!

(b) \(\Delta E = U_f - U_i \), so

\[
\Delta E = (54.4 \text{ kg})(9.81 \text{ m/s}^2)[(862 \text{ m}) - (741 \text{ m})] = -6.46 \times 10^4 \text{ J};
\]

which means the internal energy of the snow and skis increased by \(6.46 \times 10^4 \text{ J} \).

E13-13 The final potential energy is 15% less than the initial kinetic plus potential energy of the ball, so

\[
0.85(K_i + U_i) = U_f.
\]

But \(U_i = U_f \), so \(K_i = 0.15U_f/0.85 \), and then

\[
v_i = \sqrt{\frac{0.15}{0.85}2gh} = \sqrt{2(0.176)(9.81 \text{ m/s}^2)(12.4 \text{ m})} = 6.54 \text{ m/s}.
\]

E13-14 Focus on the potential energy. After the \(n \)th bounce the ball will have a potential energy at the top of the bounce of \(U_n = 0.9U_{n-1} \). Since \(U \propto h \), one can write \(h_n = (0.9)^n h_0 \). Solving for \(n \),

\[
n = \log(h_n/h_0)/\log(0.9) = \log(3 \text{ ft/6 ft})/\log(0.9) = 6.58,
\]

which must be rounded up to 7.

E13-15 Let \(m \) be the mass of the ball and \(M \) be the mass of the block.

The kinetic energy of the ball just before colliding with the block is given by \(K_1 = U_0 \), so \(v_1 = \sqrt{2(9.81 \text{ m/s}^2)(0.687 \text{ m})} = 3.67 \text{ m/s} \).

Momentum is conserved, so if \(v_2 \) and \(v_3 \) are velocities of the ball and block after the collision then \(mv_1 = mv_2 + Mv_3 \). Kinetic energy is not conserved, instead

\[
\frac{1}{2}\left(\frac{1}{2}mv_1^2\right) = \frac{1}{2}mv_2^2 + \frac{1}{2}Mv_3^2.
\]

Combine the energy and momentum expressions to eliminate \(v_3 \):

\[
\begin{align*}
mv_1^2 &= 2mv_2^2 + 2M\left(\frac{m}{M}(v_1 - v_2)\right)^2, \\
Mv_1^2 &= 2Mv_2^2 + 2mv_2^2 - 4mv_1v_2 + 2mv_2^2,
\end{align*}
\]

which can be formed into a quadratic. The solution for \(v_2 \) is

\[
v_2 = \frac{2m \pm \sqrt{2(M^2 - mM)}}{2(M + m)}v_1 = (0.600 \pm 1.95) \text{ m/s}.
\]

The corresponding solutions for \(v_3 \) are then found from the momentum expression to be \(v_3 = 0.981 \text{ m/s} \) and \(v_3 = 0.219 \). Since it is unlikely that the ball passed through the block we can toss out the second set of answers.

E13-16 \(E_f = K_f + U_f = 3mgh \), or

\[
v_f = \sqrt{2(9.81 \text{ m/s}^2)(2)(0.18 \text{ m})} = 2.66 \text{ m/s}.
\]
We can find the kinetic energy of the center of mass of the woman when her feet leave the ground by considering energy conservation and her highest point. Then

\[
\frac{1}{2}mv_i^2 + mgy_i = \frac{1}{2}mv_f^2 + mgy_f,
\]

\[
\frac{1}{2}mv_i = mg\Delta y,
\]

\[
= (55.0 \text{ kg})(9.81 \text{ m/s}^2)(1.20 \text{ m} - 0.90 \text{ m}) = 162 \text{ J}.
\]

(a) During the jumping phase her potential energy changed by

\[
\Delta U = mg\Delta y = (55.0 \text{ kg})(9.81 \text{ m/s}^2)(0.50 \text{ m}) = 270 \text{ J}
\]

while she was moving up. Then

\[
F_{\text{ext}} = \frac{\Delta K + \Delta U}{\Delta s} = \frac{(162 \text{ J}) + (270 \text{ J})}{0.5 \text{ m}} = 864 \text{ N}.
\]

(b) Her fastest speed was when her feet left the ground,

\[
v = \frac{2K}{m} = \frac{2(162 \text{ J})}{55.0 \text{ kg}} = 2.42 \text{ m/s}.
\]

(b) The ice skater needs to lose \(\frac{1}{2}(116 \text{ kg})(3.24 \text{ m/s})^2 = 609 \text{ J}\) of internal energy.

(a) The average force exerted on the rail is \(F = (609 \text{ J})/(0.340 \text{ m}) = 1790 \text{ N}\).

12.6 km/h is equal to 3.50 m/s; the initial kinetic energy of the car is

\[
\frac{1}{2}(2340 \text{ kg})(3.50 \text{ m/s})^2 = 1.43 \times 10^4 \text{ J}.
\]

(a) The force exerted on the car is \(F = (1.43 \times 10^4 \text{ J})/(0.64 \text{ m}) = 2.24 \times 10^4 \text{ N}\).

(b) The change increase in internal energy of the car is

\[
\Delta E_{\text{int}} = (2.24 \times 10^4 \text{ N})(0.640 \text{ m} - 0.083 \text{ m}) = 1.25 \times 10^4 \text{ J}.
\]

Note that \(v_n^2 = v'_n^2 - 2\bar{\mathbf{v}}'_n \cdot \mathbf{v}_{\text{cm}} + v_{\text{cm}}^2\). Then

\[
K = \sum_n \frac{1}{2} \left(m_nv'_n^2 - 2m_nv'_n \cdot \bar{\mathbf{v}}_{\text{cm}} + m_nv_{\text{cm}}^2 \right),
\]

\[
= \sum_n \frac{1}{2} m_nv'_n^2 - \left(\sum_n m_nv'_n \right) \cdot \bar{\mathbf{v}}_{\text{cm}} + \left(\sum_n \frac{1}{2} m_n \right) v_{\text{cm}}^2,
\]

\[
= K_{\text{int}} - \left(\sum_n m_nv'_n \right) \cdot \bar{\mathbf{v}}_{\text{cm}} + K_{\text{cm}}.
\]

The middle term vanishes because of the definition of velocities relative to the center of mass.
E13-21 Momentum conservation requires $mv_0 = mv + MV$, where the sign indicates the direction. We are assuming one dimensional collisions. Energy conservation requires

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv^2 + \frac{1}{2}MV^2 + E.$$

Combining,

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv^2 + \frac{1}{2}M \left(\frac{m}{M}v_0 - \frac{m}{M}v \right)^2 + E,$$

$$Mv_0^2 = Mv^2 + m(v_0 - v)^2 + 2(M/m)E.$$

Arrange this as a quadratic in v,

$$(M + m)v^2 - (2mv_0)v + (2(M/m)E + mv_0^2 - Mv_0^2) = 0.$$

This will only have real solutions if the discriminant $(b^2 - 4ac)$ is greater than or equal to zero. Then

$$(2mv_0)^2 \geq 4(M + m) \left(2(M/m)E + mv_0^2 - Mv_0^2 \right)$$

is the condition for the minimum v_0. Solving the equality condition,

$$4m^2v_0^2 = 4(M + m) \left(2(M/m)E + (m - M)v_0^2 \right),$$

or $M^2v_0^2 = 2(M + m)(M/m)E$. One last rearrangement, and $v_0 = \sqrt{2(M + m)E/(mM)}$.

P13-1 (a) The initial kinetic energy will equal the potential energy at the highest point plus the amount of energy which is dissipated because of air drag.

$$mgh + fh = \frac{1}{2}mv_0^2,$$

$$h = \frac{v_0^2}{2(g + f/m)} = \frac{v_0^2}{2g(1 + f/w)}.$$

(b) The final kinetic energy when the stone lands will be equal to the initial kinetic energy minus twice the energy dissipated on the way up, so

$$\frac{1}{2}mv^2 = \frac{1}{2}mv_0^2 - 2fh,$$

$$= \frac{1}{2}mv_0^2 - 2f \frac{v_0^2}{2g(1 + f/w)},$$

$$= \left(\frac{m}{2} - \frac{f}{g(1 + f/w)} \right)v_0^2,$$

$$v^2 = \left(1 - \frac{2f}{w + f} \right)v_0^2,$$

$$v = \left(\frac{w - f}{w + f} \right)^{1/2}v_0.$$

P13-2 The object starts with $U = (0.234\,\text{kg})(9.81\,\text{m/s}^2)(1.05\,\text{m}) = 2.41\,\text{J}$. It will move back and forth across the flat portion $(2.41\,\text{J})/(0.688\,\text{J}) = 3.50$ times, which means it will come to a rest at the center of the flat part while attempting one last right to left journey.
P13-3 (a) The work done on the block because of friction is
\[(0.210)(2.41\text{ kg})(9.81\text{ m/s}^2)(1.83\text{ m}) = 9.09\text{ J}.
\]
The energy dissipated because of friction is
\[9.09\text{ J}/0.83 = 11.0\text{ J}.
\]
(b) The initial speed of the bullet is
\[v_0 = \frac{M + m}{m} \cdot v = \frac{(2.41\text{ kg}) + (0.00454\text{ kg})}{(0.00454\text{ kg})}(3.02\text{ m/s}) = 1.60 \times 10^3 \text{ m/s}.
\]

P13-4 The energy stored in the spring after compression is
\[
\frac{1}{2}(193\text{ N/m})(0.0416\text{ m})^2 = 0.167\text{ J}.
\]
Since 117 mJ was dissipated by friction, the kinetic energy of the block before colliding with the spring was 0.284 J. The speed of the block was then
\[v = \sqrt{2(0.284\text{ J})/(1.34\text{ kg})} = 0.651 \text{ m/s}.
\]

P13-5 (a) Using Newton’s second law, \(F = ma\), so for circular motion around the proton
\[\frac{mv^2}{r} = F = \frac{ke^2}{r^2}.
\]
The kinetic energy of the electron in an orbit is then
\[K = \frac{1}{2}mv^2 = \frac{1}{2}k\frac{e^2}{r}.
\]
The change in kinetic energy is
\[\Delta K = \frac{1}{2}ke^2 \left(\frac{1}{r_2} - \frac{1}{r_1}\right).
\]
(b) The potential energy difference is
\[\Delta U = -\int_{r_1}^{r_2} \frac{ke^2}{r^2}dr = -ke^2 \left(\frac{1}{r_2} - \frac{1}{r_1}\right).
\]
(c) The total energy change is
\[\Delta E = \Delta K + \Delta U = -\frac{1}{2}ke^2 \left(\frac{1}{r_2} - \frac{1}{r_1}\right).
\]

P13-6 (a) The initial energy of the system is \((4000\text{ lb})(12\text{ ft}) = 48,000 \text{ ft} \cdot \text{lb}\). The safety device removes \((1000\text{ lb})(12\text{ ft}) = 12,000 \text{ ft} \cdot \text{lb}\) before the elevator hits the spring, so the elevator has a kinetic energy of \(36,000 \text{ ft} \cdot \text{lb}\) when it hits the spring. The speed of the elevator when it hits the spring is
\[v = \sqrt{\frac{2(36,000 \text{ ft} \cdot \text{lb})(32.0 \text{ ft/s}^2)}{(4000 \text{ lb})}} = 24.0 \text{ ft/s}.
\]
(b) Assuming the safety clamp remains in effect while the elevator is in contact with the spring then the distance compressed will be found from
\[36,000 \text{ ft} \cdot \text{lb} = \frac{1}{2}(10,000 \text{ lb/ft})y^2 - (4000 \text{ lb})y + (1000 \text{ lb})y.
\]
This is a quadratic expression in \(y\) which can be simplified to look like

\[5y^2 - 3y - 36 = 0,\]

which has solutions \(y = (0.3 \pm 2.7)\) ft. Only \(y = 3.00\) ft makes sense here.

(c) The distance through which the elevator will bounce back up is found from

\[33,000 \text{ ft} = (4000 \text{ lb})y - (1000 \text{ lb})y,\]

where \(y\) is measured from the most compressed point of the spring. Then \(y = 11\) ft, or the elevator bounces back up 8 feet.

(d) The elevator will bounce until it has traveled a total distance so that the safety device dissipates all of the original energy, or 48 ft.

P13-7 The net force on the top block while it is being pulled is

\[11.0 \text{ N} - F_f = 11.0 \text{ N} - (0.35)(2.5 \text{ kg})(9.81 \text{ m/s}^2) = 2.42 \text{ N}.\]

This means it is accelerating at \((2.42 \text{ N})/(2.5 \text{ kg}) = 0.968 \text{ m/s}^2\). That acceleration will last a time \(t = \sqrt{2(0.30 \text{ m})/(0.968 \text{ m/s}^2)} = 0.787 \text{ s}\). The speed of the top block after the force stops pulling is then \((0.968 \text{ m/s}^2)(0.787 \text{ s}) = 0.762 \text{ m/s}\). The force on the bottom block is \(F_f\), so the acceleration of the bottom block is

\[(0.35)(2.5 \text{ kg})(9.81 \text{ m/s}^2)/(10.0 \text{ kg}) = 0.858 \text{ m/s}^2,\]

and the speed after the force stops pulling on the top block is \((0.858 \text{ m/s}^2)(0.787 \text{ s}) = 0.675 \text{ m/s}\).

(a) \(W = Fs = (11.0 \text{ N})(0.30 \text{ m}) = 3.3 \text{ J}\) of energy were delivered to the system, but after the force stops pulling only

\[\frac{1}{2}(2.5 \text{ kg})(0.762 \text{ m/s})^2 + \frac{1}{2}(10.0 \text{ kg})(0.675 \text{ m/s})^2 = 3.004 \text{ J}\]

were present as kinetic energy. So 0.296 J is “missing” and would be now present as internal energy.

(b) The impulse received by the two block system is then \(J = (11.0 \text{ N})(0.787 \text{ s}) = 8.66 \text{ N-s}\). This impulse causes a change in momentum, so the speed of the two block system after the external force stops pulling and both blocks move as one is \((8.66 \text{ N-s})(12.5 \text{ kg}) = 0.693 \text{ m/s}\). The final kinetic energy is

\[\frac{1}{2}(12.5 \text{ kg})(0.693 \text{ m/s})^2 = 3.002 \text{ J};\]

this means that 0.002 J are dissipated.

P13-8 Hmm.